Abstract
Background: Esotropia and exotropia are two major phenotypes of comitant strabismus. It remains controversial whether esotropia and exotropia would share common genetic backgrounds. In this study, we used a quantitative trait locus (QTL)-sequencing pipeline for diploid plants to screen for susceptibility loci of strabismus in whole exome sequencing of pooled genomic DNAs of individuals. Methods: Pooled genomic DNA (2.5 ng each) of 20 individuals in three groups, Japanese patients with esotropia and exotropia, and normal members in the families, was sequenced twice after exome capture, and the first and second sets of data in each group were combined to increase the read depth. The SNP index, as the ratio of variant genotype reads to all reads, and Δ(SNP index) values, as the difference of SNP index between two groups, were calculated by sliding window analysis with a 4 Mb window size and 10 kb slide size. The rows of 200 “N”s were inserted as a putative 200-b spacer between every adjoining locus to depict Δ(SNP index) plots on each chromosome. SNP positions with depth < 20 as well as SNP positions with SNP index of <0.3 were excluded. Results: After the exclusion of SNPs, 12,242 SNPs in esotropia/normal group and 12,108 SNPs in exotropia/normal group remained. The patterns of the Δ(SNP index) plots on each chromosome appeared different between esotropia/normal group and exotropia/normal group. When the consecutive groups of SNPs on each chromosome were set at three patterns: SNPs in each cytogenetic band, 50 consecutive sliding SNPs, and SNPs in 4 Mb window size with 10 kb slide size, p values (Wilcoxon signed rank test) and Q values (false discovery rate) in a few loci as Manhattan plots showed significant differences in comparison between the Δ(SNP index) in the esotropia/normal group and exotropia/normal group. Conclusions: The pooled DNA sequencing and QTL mapping approach for plants could provide overview of genetic background on each chromosome and would suggest different genetic backgrounds for two major phenotypes of comitant strabismus, esotropia and exotropia.
Highlights
Comitant strabismus is the misalignment of two eyes that variously interferes with binocular vision and is mainly classified into esotropia and exotropia
In comparison between esotropia group and normal group and between exotropia group and normal group, small peaks were visualized along the ∆(SNP index) curve with the trendline and dense plots (Figure 2, Supplementary Figure S1) on some chromosomes
The patterns of the ∆(SNP index) curve on each chromosome in comparison between esotropia group and normal group appeared to be different from the patterns in comparison between exotropia group and normal group
Summary
Comitant strabismus is the misalignment of two eyes that variously interferes with binocular vision and is mainly classified into esotropia and exotropia. Environmental factors in pregnancy and delivery would play a role in the development of comitant strabismus [2,3] These facts suggest that comitant strabismus would be related to quantitative trait loci (QTLs), which have measurable phenotypic variations owing to genetic and environmental influences [4]. When the consecutive groups of SNPs on each chromosome were set at three patterns: SNPs in each cytogenetic band, 50 consecutive sliding SNPs, and SNPs in 4 Mb window size with 10 kb slide size, p values (Wilcoxon signed rank test) and Q values (false discovery rate) in a few loci as Manhattan plots showed significant differences in comparison between the ∆(SNP index) in the esotropia/normal group and exotropia/normal group. Conclusions: The pooled DNA sequencing and QTL mapping approach for plants could provide overview of genetic background on each chromosome and would suggest different genetic backgrounds for two major phenotypes of comitant strabismus, esotropia and exotropia
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.