Abstract

BackgroundSarcoidosis (OMIM 181000) is a multi-systemic granulomatous disorder of unknown origin. Despite multiple genome-wide association (GWAS) studies, no major pathogenic pathways have been identified to date. To find out relevant sarcoidosis predisposing genes, we searched for de novo and recessive mutations in 3 young probands with sarcoidosis and their healthy parents using a whole-exome sequencing (WES) methodology.MethodsFrom the SARCFAM project based on a national network collecting familial cases of sarcoidosis, we selected three families (trios) in which a child, despite healthy parents, develop the disease before age 15 yr. Each trio was genotyped by WES (Illumina HiSEQ 2500) and we selected the gene variants segregating as 1) new mutations only occurring in affected children and 2) as recessive traits transmitted from each parents. The identified coding variants were compared between the three families. Allelic frequencies and in silico functional results were analyzed using ExAC, SIFT and Polyphenv2 databases. The clinical and genetic studies were registered by the ClinicalTrials.gov - Protocol Registration and Results System (PRS) (https://clinicaltrials.gov) receipt under the reference NCT02829853 and has been approved by the ethical committee (CPP LYON SUD EST – 2 – REF IRB 00009118 – September 21, 2016).ResultsWe identified 37 genes sharing coding variants occurring either as recessive mutations in at least 2 trios or de novo mutations in one of the three affected children. The genes were classified according to their potential roles in immunity related pathways: 9 to autophagy and intracellular trafficking, 6 to G-proteins regulation, 4 to T-cell activation, 4 to cell cycle and immune synapse, 2 to innate immunity. Ten of the 37 genes were studied in a bibliographic way to evaluate the functional link with sarcoidosis.ConclusionsWhole exome analysis of case-parent trios is useful for the identification of genes predisposing to complex genetic diseases as sarcoidosis. Our data identified 37 genes that could be putatively linked to a pediatric form of sarcoidosis in three trios. Our in-depth focus on 10 of these 37 genes may suggest that the formation of the characteristic lesion in sarcoidosis, granuloma, results from combined deficits in autophagy and intracellular trafficking (ex: Sec16A, AP5B1 and RREB1), G-proteins regulation (ex: OBSCN, CTTND2 and DNAH11), T-cell activation (ex: IDO2, IGSF3), mitosis and/or immune synapse (ex: SPICE1 and KNL1). The significance of these findings needs to be confirmed by functional tests on selected gene variants.

Highlights

  • Sarcoidosis (OMIM 181000) is a multi-systemic granulomatous disorder of unknown origin

  • Sarcoidosis is an enigmatic multisystem disease characterized by the development and accumulation of granulomas, a compact collection of macrophages which have differentiated into epithelioid and multinucleated giant cells associated with lymphocytes [1]

  • Taking into account all values of minor allele frequency (MAF), we observed 9 variants in 9 different genes expressed as recessive traits in at least 2 trios, and respectively Sec16A and ADGRV1 (T1 + Trio 2 (T2)), RHBDL2, ZNF804A, AP5B1, TYR and CPAMD8 (T1 + Trio 3 (T3)), PRSS48 (T2 + T3) and OR11G2 (T1 + T2 + T3) (Additional file 1: Table S1)

Read more

Summary

Introduction

Sarcoidosis (OMIM 181000) is a multi-systemic granulomatous disorder of unknown origin. A remarkable feature of sarcoidosis is the compartmentalization of CD4 (+) T helper 1 (Th1) lymphocytes and activated macrophages in the affected organs to initiate the formation and maintenance of granulomas [11]. Another subset of T-cells, Th17 effector CD4 (+), which mediate the crosstalk between immune cells and tissues, has been shown to participate in the progression of granulomas and in the fibrotic phase of the disease. Our working hypothesis that we have tested here is that a comparative WES analysis of children affected early in life by a serious form of sarcoidosis and both their unaffected parents (trio analysis) may identify de novo and recessive genetic variants that could potentially point to pathways acting alone or in combination in disease development

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.