Abstract

ObjectivesThe long-term prognosis of patients with coronary artery disease (CAD) with diffuse long lesion underwent coronary artery bypass graft (CABG) or percutaneous coronary intervention (PCI) remains worse. Here, we aimed to identify distinctive genes involved and offer novel insights into the pathogenesis of diffuse long lesion.Materials and methodsWhole exome sequencing was performed on peripheral blood samples from 20 CAD patients with diffuse long lesion (CAD-DLL) and from 10 controls with focal lesion (CAD-FL) through a uniform pipeline. Proteomics analysis was conducted on the serum samples from 10 CAD-DLL patients and from 10 controls with CAD-FL by mass spectrometry. Bioinformatics analysis was performed to elucidate the involved genes, including functional annotation and protein–protein interaction analysis.ResultsA total of 742 shared variant genes were found in CAD-DLL patients but not in controls. Of these, 46 genes were identified as high-frequency variant genes (≥ 4/20) distinctive genes. According to the consensus variant site, 148 shared variant sites were found in the CAD-DLL group. The lysosome and cellular senescence-related pathway may be the most significant pathway in diffuse long lesion. Following the DNA-protein combined analysis, eight genes were screened whose expression levels were altered at both DNA and protein levels. Among these genes, the MAN2A2 gene, the only one that was highly expressed at the protein level, was associated with metabolic and immune-inflammatory dysregulation.ConclusionsCompared to individuals with CAD-FL, patients with CAD-DLL show additional variants. These findings contribute to the understanding of the mechanism of CAD-DLL and provide potential targets for the diagnosis and treatment of CAD-DLL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call