Abstract
The principal goal of this work was to establish the feasibility of two biosensor technologies with enhanced specificity and selectivity for the detection of several bioavailable heavy metals in environmental samples. Two parallel strategies have been followed. The first approach was to construct whole cell bacterial biosensors that emit a bioluminescent or fluorescent signal in the presence of a biologically available heavy metal. The molecular basis of σ-54 promoters as sensing elements of environmental pollutants has been determined and a number of metal-induced promoter regions have been identified, sequenced and cloned as promoter cassettes. The specificity of the promoter cassettes has been determined using luxCDABE reporter systems. Whole cell-biosensors containing metal-induced lux reporter systems have been incorporated into different matrices for their later immobilisation on optic fibres and characterised in terms of their sensitivity and storage capacity. The second type of sensors was based on the direct interaction between metal-binding proteins and heavy metal ions. In this case, the capacitance changes of the proteins, such as synechoccocal metallothionein (as a GST-SmtA fusion protein) and the mercury regulatory protein, MerR, were detected in the presence of femtomolar to millimolar metal ion concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.