Abstract

BackgroundTherapeutic focused-ultrasound to the hippocampus has been reported to exert neuroprotective effects on dementia. In the present study, we examined whether the whole-brain LIPUS (low-intensity pulsed ultrasound) therapy is effective and safe in 2 mouse models of dementia (vascular dementia, VaD and Alzheimer's disease, AD), and if so, to elucidate the common underlying mechanism(s) involved. MethodsWe used bilateral carotid artery stenosis (BCAS) model with micro-coils in male C57BL/6 mice as a VaD model and 5XFAD transgenic mice as an AD model. We applied the LIPUS therapy (1.875 MHz, 6.0 kHz, 32cycles) to the whole brain. ResultsIn both models, the LIPUS therapy markedly ameliorated cognitive impairments (Y-maze test and/or passive avoidance test) associated with improved cerebral blood flow (CBF). Mechanistically, the LIPUS therapy significantly increased CD31-positive endothelial cells and Olig2-positive oligodendrocyte precursor cells (OPCs) in the VaD model, while it reduced Iba-1-positive microglias and amyloid-β (Aβ) plaque in the AD model. In both models, endothelium-related genes were significantly upregulated in RNA-sequencing, and expressions of endothelial nitric oxide synthase (eNOS) and neurotrophins were upregulated in Western blotting. Interestingly, the increases in glia cells and neurotrophin expressions showed significant correlations with eNOS expression. Importantly, these beneficial effects of LIPUS were absent in eNOS-knockout mice. ConclusionsThese results indicate that the whole-brain LIPUS is an effective and non-invasive therapy for dementia by activating specific cells corresponding to each pathology, for which eNOS activation plays an important role as a common mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call