Abstract

Electrical muscle stimulation (EMS) is an increasingly popular training method and has become the focus of research in recent years. New EMS devices offer a wide range of mobile applications for whole-body EMS (WB-EMS) training, e.g., the intensification of dynamic low-intensity endurance exercises through WB-EMS. The present study aimed to determine the differences in exercise intensity between WB-EMS-superimposed and conventional walking (EMS-CW), and CON and WB-EMS-superimposed Nordic walking (WB-EMS-NW) during a treadmill test. Eleven participants (52.0 ± years; 85.9 ± 7.4 kg, 182 ± 6 cm, BMI 25.9 ± 2.2 kg/m2) performed a 10 min treadmill test at a given velocity (6.5 km/h) in four different test situations, walking (W) and Nordic walking (NW) in both conventional and WB-EMS superimposed. Oxygen uptake in absolute (VO2) and relative to body weight (rel. VO2), lactate, and the rate of perceived exertion (RPE) were measured before and after the test. WB-EMS intensity was adjusted individually according to the feedback of the participant. The descriptive statistics were given in mean ± SD. For the statistical analyses, one-factorial ANOVA for repeated measures and two-factorial ANOVA [factors include EMS, W/NW, and factor combination (EMS*W/NW)] were performed (α = 0.05). Significant effects were found for EMS and W/NW factors for the outcome variables VO2 (EMS: p = 0.006, r = 0.736; W/NW: p < 0.001, r = 0.870), relative VO2 (EMS: p < 0.001, r = 0.850; W/NW: p < 0.001, r = 0.937), and lactate (EMS: p = 0.003, r = 0.771; w/NW: p = 0.003, r = 0.764) and both the factors produced higher results. However, the difference in VO2 and relative VO2 is within the range of biological variability of ± 12%. The factor combination EMS*W/NW is statistically non-significant for all three variables. WB-EMS resulted in the higher RPE values (p = 0.035, r = 0.613), RPE differences for W/NW and EMS*W/NW were not significant. The current study results indicate that WB-EMS influences the parameters of exercise intensity. The impact on exercise intensity and the clinical relevance of WB-EMS-superimposed walking (WB-EMS-W) exercise is questionable because of the marginal differences in the outcome variables.

Highlights

  • Electrical muscle stimulation (EMS) is an increasingly popular training method and has become the focus of research in recent years

  • CON-W, conventional walking; EMS-W, electrical muscle stimulation superimposed walking; CON-NW, conventional Nordic-walking; EMS-NW, electrical muscle stimulation superimposed Nordic-walking; EMS, factor electrical muscle stimulation; W/NW factor walking vs. Nordic walking

  • As factor of 2-factorial ANOVA), the intensification of W and NW through whole-body EMS (WB-EMS) seems to be clinically irrelevant for this population

Read more

Summary

Introduction

Electrical muscle stimulation (EMS) is an increasingly popular training method and has become the focus of research in recent years. Compared to the devices used in previous studies (Buuren et al, 2013, 2015; Kemmler et al, 2013, 2016b,c), which require a connection between the main station, vest, and belts worn by the patient for power transfer via cable, newer EMS-devices work wirelessly via battery and apps for intensity adjusting. These new EMS devices offer a wide range of mobile applications for whole-body EMS (WB-EMS) training. Superimposed dynamic WBEMS resistance training seems to provide minor or no benefits when compared with dynamic resistance training alone (Micke et al, 2018)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call