Abstract
Body-element content was measured for three life stages of wild Atlantic salmon Salmo salar from three distinct Newfoundland populations as individuals crossed between freshwater and marine ecosystems. Life stage explained most of the variation in observed body-element concentration whereas river of capture explained very little variation. Element composition of downstream migrating post-spawn adults (i.e. kelts) and juvenile smolts were similar and the composition of these two life stages strongly differed from adults migrating upstream to spawn. Low variation within life stages and across populations suggests that S. salar may exert rheostatic control of their body-element composition. Additionally, observed differences in trace element concentration between adults and other life stages were probably driven by the high carbon concentration in adults because abundant elements, such as carbon, can strongly influence the observed concentrations of less abundant elements. Thus, understanding variation among individuals in trace elements composition requires the measurement of more abundant elements. Changes in element concentration with ontogeny have important consequences the role of fishes in ecosystem nutrient cycling and should receive further attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.