Abstract

Leukoreduction of blood is now widely performed by blood banks, and the possibility of recovering 10(8) to 10(9) white blood cells (WBCs) from leukoreduction filters, which are usually discarded, represents a promising source for normal human cells. Previous studies with these filters to prepare WBCs have performed their experimentation with fresh cells only. Whether these filter-derived cells could also be used to prepare frozen cell banks to facilitate work organization and open new avenues for their utilization as references in physiological studies and clinical investigations was investigated. Blood samples or whole-blood leukoreduction filters were obtained, after informed consent, from volunteers or blood donors, respectively. The proportions of CD3+, CD14+, CD16+, CD19+, and CD45+ cells within peripheral blood mononuclear cells (PBMNCs) were determined by flow cytometry from all samples. B cells were isolated and their functional responses were evaluated in vitro. The yield of PBMNCs recovered from whole-blood leukoreduction filters was lower (50%) than the one with fresh blood samples but still provided 2 x 10(8) to 4 x 10(8) PBMNCs per unit. After one cycle of freezing-thawing, the proportions of B- and T-cell populations were similar to normal blood values. Purified B cells issued from whole-blood leukoreduction filters displayed normal phenotypes and functions. Leukoreduction filters represent a valuable source of PBMNCs. These cells could be easily recovered to prepare frozen cell banks useful in basic phenotypic and functional analyses involving the main subsets of B cells and the global T-cell population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call