Abstract

BackgroundA more time saving, convenient, reproducible, and scalable method is needed to assess total HIV-1 DNA levels.MethodsFrozen whole blood and peripheral blood mononuclear cell (PBMC) samples both 200 μl at the same point were used to detect total HIV-1 DNA. Automatic extraction of total HIV-1 DNA was used to ensure the consistency of sample extraction efficiency. The detection reagent was HIV-1 DNA quantitative detection kit and real-time quantitative PCR was utilized.ResultsOf the 44 included patients, 42 were male and 2 were female, with a median age of 33 years. Thirty-three cases were collected after receiving antiviral treatment, with a median duration of treatment of 3 months, and the other 11 cases were collected before antiviral treatment. The median viral load was 1.83 log10 copies/mL, the median CD4 and CD8 count were 94 and 680 cells/μL, and the median CD4/CD8 ratio was 0.18. The results of the two samples were 3.02 ± 0.39 log10 copies/106 PBMCs in PBMC samples and 3.05 ± 0.40 log10 copies/106 PBMCs in whole blood samples. The detection results of the two methods were highly correlated and consistent by using paired t test (P = 0.370), pearson correlation (r = 0.887, P < 0.0001) and intra-group correlation coefficient (ICC = 0.887, P < 0.0001) and bland-altman [4.55% points were outside the 95% limits of agreement (− 0.340 ~ 0.390)].ConclusionsThe results of the whole blood sample test for total HIV-1 DNA are consistent with those of PBMC samples. In a clinical setting it is recommended to use whole blood samples directly for the evaluation of the HIV reservoir.

Highlights

  • A more time saving, convenient, reproducible, and scalable method is needed to assess total Human immunodeficiency virus-1 (HIV-1) DNA levels

  • The results showed that HIV-1 DNA could predict the progression of the disease regardless of the mode of result expression [7]

  • 33 cases were collected after antiviral treatment, the median treatment time was 3 months, and 11 cases were collected before antiviral treatment

Read more

Summary

Introduction

A more time saving, convenient, reproducible, and scalable method is needed to assess total HIV-1 DNA levels. The reason is that when HIV-1 enters the body, RNA is reverted to DNA and integrated into the genome of infected cells for subsequent life cycle activities. Most of the infected cells die and are eliminated by the immune system after antiviral treatment, while only a small number of infected cells survive and remain at rest, becoming HIV-1 latent reservoir, otherwise known as HIV-1 DNA reservoir [1, 2]. HIV-1 reservoir refers to a resting CD4 cell in a dormant state but integrates the complete HIV-1 genome and has viral replication capacity [3]. In earlier studies of the HIV-1 reservoir, scientists paid more attention to the concept of narrow HIV-1 reservoir, and the number of CD4 cells that integrated the entire HIV-1 virus and remained at rest

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.