Abstract

Communication about threats including those posed by the presence of predators occurs mainly through acoustic signals called alarm calls. The comprehension of these calls by receivers and their rapid antipredator response are crucial in terms of survival. However, to avoid overreaction, individuals should evaluate whether or not an antipredator response is needed by paying attention to who is calling. For instance, we could expect adults to be more experienced with predator encounters than juveniles and thus elicit stronger antipredator responses in others when alarming. Similarly, we could expect a stronger response to alarm calls when more than one individual is calling. To test these assumptions, we applied a playback experiment to wild ravens, in which we manipulated the age class (adult or juvenile) and the number (one or two) of the callers. Our results revealed a seasonal effect of age class but no effect of number of callers. Specifically, the ravens responded with stronger antipredator behaviour (vigilance posture) towards alarm calls from adults as compared to juveniles in summer and autumn, but not in spring. We discuss alternative interpretations for this unexpected seasonal pattern and argue for more studies on call-based communication in birds to understand what type of information is relevant under which conditions.

Highlights

  • While acoustic signals given in the presence of predators are commonly referred to as alarm calls (Hauser, 1996), the behaviour associated with driving the predator away is known as mobbing or collective antipredator behaviour (Curio, 1978; Graw & Manser, 2007)

  • We tested whether wild ravens respond to two types of information possibly encoded in conspecifics alarm calls, i.e. the age class of the caller, and whether calls are given by one or more individuals

  • Similar findings have been described in some studies on mammals (Ramakrishnan & Coss, 2000; Seyfarth & Cheney, 1986), whereas other studies reported no effect of age class (Swan & Hare, 2008) or even the opposite (Blumstein & Daniel, 2004)

Read more

Summary

Introduction

For instance, has been intensively studied over the last decades (Catchpole & Slater, 2008) and is fairly well understood from a behavioural and neurobiological perspective (Bolhuis & Gahr, 2006), making it an excellent model for human speech (Bolhuis, Okanoya, & Scharff, 2010). In respect to the latter, research on a single grey parrot, ‘Alex’, has become famous: using English words for communicating with human trainers, Alex labelled objects, but responded to questions probing his knowledge (e.g. of relational concepts like same/different) and expressed. Potential victims may gather forces and drive the predator away from the area (Foster & Treherne, 1981). While acoustic signals given in the presence of predators are commonly referred to as alarm calls (Hauser, 1996), the behaviour associated with driving the predator away is known as mobbing or collective antipredator behaviour (Curio, 1978; Graw & Manser, 2007)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call