Abstract

Predatory aquatic insects are a diverse group comprising top predators in small fishless water bodies. Knowledge of their diet composition is fragmentary, which hinders the understanding of mechanisms maintaining their high local diversity and of their impacts on local food web structure and dynamics. We conducted multiple-choice predation experiments using nine common species of predatory aquatic insects, including adult and larval Coleoptera, adult Heteroptera and larval Odonata, and complemented them with literature survey of similar experiments. All predators in our experiments fed selectively on the seven prey species offered, and vulnerability to predation varied strongly between the prey. The predators most often preferred dipteran larvae; previous studies further reported preferences for cladocerans. Diet overlaps between all predator pairs and predator overlaps between all prey pairs were non-zero. Modularity analysis separated all primarily nectonic predator and prey species from two groups of large and small benthic predators and their prey. These results, together with limited evidence from the literature, suggest a highly interconnected food web with several modules, in which similarly sized predators from the same microhabitat are likely to compete strongly for resources in the field (observed Pianka’s diet overlap indices >0.85). Our experiments further imply that ontogenetic diet shifts are common in predatory aquatic insects, although we observed higher diet overlaps than previously reported. Hence, individuals may or may not shift between food web modules during ontogeny.

Highlights

  • Who eats whom and how much? Answering this seemingly simple question is vital for the understanding of processes structuring animal communities

  • Laboratory Experiment We focus on the following six aspects of our experimentally assembled food web: selectivity of predators, diet overlaps of different predators, ontogenetic diet shifts, prey vulnerability, predator overlaps of different prey and food web modularity

  • By combining a simple experiment with a literature survey, we provide a basis for future studies on food webs involving predatory aquatic insects in small standing water bodies

Read more

Summary

Introduction

Who eats whom and how much? Answering this seemingly simple question is vital for the understanding of processes structuring animal communities. Data on prey selectivity are crucial for mapping the topology of food webs and predicting the effects of species invasions and extinctions on food web structure and stability [1,2,3,4]. Food webs in standing fishless water bodies have been much less studied than those in streams and lakes (see [7]). Different physical factors and biotic interactions shape the communities in these habitat types, and many species are present in only one of them [8]. Predator-prey body mass ratios differ across habitat types and taxonomic groups of consumers, which may have important implications for food web stability because predator-prey body mass ratios affect interaction strengths [9,10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call