Abstract
This paper explores how borrowers’ financial and personal information, loan characteristics and lending models affect peer-to-peer (P2P) loan funding outcomes. Using a large sample of listings from one of the largest Chinese online P2P lending platforms, we find that those borrowers earning a higher income or who own a car are more likely to receive a loan, pay lower interest rates, and are less likely to default. The credit grade assigned by the lending platform may not represent the creditworthiness of potential borrowers. We also find that the unique offline process in the Chinese P2P online lending platform exerts significant influence on the lending decision. We discuss the implications of our results for the design of big data-based lending markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.