Abstract

The present study aimed to assess the use of technical-tactical variables and machine learning (ML) classifiers in the automatic classification of the passing difficulty (DP) level in soccer matches and to illustrate the use of the model with the best performance to distinguish the best passing players. We compared eight ML classifiers according to their accuracy performance in classifying passing events using 35 technical-tactical variables based on spatiotemporal data. The Support Vector Machine (SVM) algorithm achieved a balanced accuracy of 0.70 ± 0.04%, considering a multi-class classification. Next, we illustrate the use of the best-performing classifier in the assessment of players. In our study, 2,522 pass actions were classified by the SVM algorithm as low (53.9%), medium (23.6%), and high difficulty passes (22.5%). Furthermore, we used successful rates in low-DP, medium-DP, and high-DP as inputs for principal component analysis (PCA). The first principal component (PC1) showed a higher correlation with high-DP (0.80), followed by medium-DP (0.73), and low-DP accuracy (0.24). The PC1 scores were used to rank the best passing players. This information can be a very rich performance indication by ranking the best passing players and teams and can be applied in offensive sequences analysis and talent identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.