Abstract

Abstract The 100th meridian bisects the Great Plains of the United States and effectively divides the continent into more arid western and less arid eastern halves and is well expressed in terms of vegetation, land hydrology, crops, and the farm economy. Here, it is considered how this arid–humid divide will change in intensity and location during the current century under rising greenhouse gases. It is first shown that state-of-the-art climate models from phase 5 of the Coupled Model Intercomparison Project generally underestimate the degree of aridity of the United States and simulate an arid–humid divide that is too diffuse. These biases are traced to excessive precipitation and evapotranspiration and inadequate blocking of eastward moisture flux by the Pacific coastal ranges and Rockies. Bias-corrected future projections are developed that modify observationally based measures of aridity by the model-projected fractional changes in aridity. Aridity increases across the United States, and the aridity gradient weakens. The main contributor to the changes is rising potential evapotranspiration, while changes in precipitation working alone increase aridity across the southern and decrease across the northern United States. The “effective 100th meridian” moves to the east as the century progresses. In the current farm economy, farm size and percent of county under rangelands increase and percent of cropland under corn decreases as aridity increases. Statistical relations between these quantities and the bias-corrected aridity projections suggest that, all else being equal (which it will not be), adjustment to changing environmental conditions would cause farm size and rangeland area to increase across the plains and percent of cropland under corn to decrease in the northern plains as the century advances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.