Abstract

We investigated the impact of inundative releases of the parasitoid, Encarsia formosa Gahan (Hymenoptera: Aphelinidae), for control of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), on cut gerbera (Gerbera jamesonii L.) under controlled greenhouse conditions. Experimental units consisted of ten plants covered and separated from other units by gauze tents. We assessed three release rates of the aphelinid parasitoid: a 7-week experiment with a standard release rate (10 m−2/14 days), and a subsequent 3-month trial with high (100 m−2/week) and very high (1,000 m−2/week) release rates. Experimental units without release of parasitoids served as control treatment. Gerbera plants were infested initially with 50–100 juvenile and 50–70 adult whiteflies in the first experiment, and in the second experiment with less than 50 juveniles per plant and 50–70 adults. Whitefly and parasitoid population density were assessed in weekly intervals using infestation and activity categories. Results show that parasitized whiteflies were present in all treatments within 2 weeks after initial release. Unfortunately, it was not possible to control whiteflies with standard release rates of E. formosa. Although parasitism rates slightly increased, the effect on whitefly populations was negligible. Large amounts of honeydew and growth of sooty mold fungi caused the termination of the first experiment. In a second experiment, E. formosa was tested at 10–100 times higher release densities. In contrast to the first experiment, whitefly densities increased steadily during the first 8 weeks, but remained constant until the end of the experiment in both treatments. Parasitism by E. formosa reached its maximum after 8 weeks. We discuss possible reasons for the low efficiency of E. formosa as a whitefly antagonist in greenhouse production of gerbera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.