Abstract

<p>Whitecap coverage were retrieved from high-speed video recordings of the water surface obtained on the unique laboratory faculty The Large Thermostratified Test Tank with wind-wave channel (cross-section from 0.7×0.7 to 0.7×0.9 m<sup>2</sup> at the end, 12 m fetch, wind velocity up to 35 m/s, U<sub>10</sub> up to 65 m/s). The wind wave was induced using a wave generator installed at the beginning of the channel (a submerged horizontal plate, frequency 1.042 Hz, amplitude 93 mm) working in a pulsed operation (three periods). Wave breaking was induced in working area by a submerged plate (1.2×0.7 m<sup>2</sup>, up to 12 depth, AOA -11,7°). Experiments were carried out for equivalent wind velocities U<sub>10</sub> from 17.8 to 40.1 m/s. Wire wave gauge was used to control the shape and phase of the incident wave.</p><p>To obtain the surface area occupied by wave breaking, we used two Cygnet CY2MP-CL-SN cameras with 50 mm lenses. The cameras are installed above the channel at a height of 273 cm from the water surface, separated by 89 cm. The image scale was 302 μm/px, the size of the image obtained from each camera is 2048x1088 px<sup>2</sup>, which corresponds to 619x328 mm<sup>2</sup> (the long side of the frame along the channel). The shooting was carried out with a frequency of 50 Hz, an exposure time of 3 ms, 250 frames were recorded for each wave train. To illuminate the image areas to the side of the measurement area, a diffuse screen was placed on the side wall, which was illuminated by powerful LED lamps to create a uniform illumination source covering the entire side wall of the section.</p><p>Using specially developed software for automatic detection of areas of wave breaking, the values of the whitecap coverage area were obtained. Automatic image processing was performed using morphological analysis in combination with manual processing of part of the frames for tweaking the algorithm parameters: for each mode, manual processing of several frames was performed, based on the results of which automatic algorithm parameters were selected to ensure that the resulting whitecap coverage corresponded. Comparison of images obtained from different angles made it possible to detect and exclude areas of glare on the surface from the whitecap coverage.</p><p>The repeatability of the created wave breakings allows carrying out independent measurements for the same conditions, for example the parameters of spray generation will give estimations of the average number of fragmentation events per unit area of the wave breaking area.</p><p>The work was supported by the RFBR grants 21-55-50005 and 20-05-00322 (conducting an experiment), President grant for young scientists МК-5503.2021.1.5 (software development) and the RSF grant No. 19-17-00209 (data processing).</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.