Abstract

The need for software security in untrusted environments is ever increasing. White-box cryptography aims to ensure the security of cryptographic algorithms when the attacker has full access to their implementations. However, there is no secure white-box implementation of standard block ciphers such as DES and AES known to date: All published techniques have been practically broken. In this paper, we revisit white-box cryptography and propose a family of white-box secure block ciphers SPACE with several novel features. The design of SPACE is such that the key-extraction security in the white box reduces to the well-studied problem of key recovery for block ciphers (AES in our example) in the standard black-box setting. Moreover, to mitigate code lifting, we introduce the notion of space hardness. It measures the difficulty of compressing the white-box implementation of a cipher, and quantifies security against code lifting by the amount of code that needs to be extracted from the implementation by a white-box attacker to maintain its functionality. SPACE includes several variants with different white-box code sizes. Therefore, it is applicable to a wide range of environments and use cases. One of the variants called N-SPACE can be implemented with different code sizes while keeping the cipher itself unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.