Abstract

This study proposes an innovative strategy of lignocellulose biodegradation by Inonotus obliquus under solid-state fermentation in extracting Eucommia ulmoides trans-1,4-polyisoprene (EUG) and producing reducing sugars efficiently. EUG and sugars were obtained through the white rot fungal pretreatment of E. ulmoides leaves, ultrasound-assisted solvent extraction, and enzymatic saccharification. After mere 2-day fermentation, the loss of lignin, cellulose, and hemicelluloses of the leaves achieved 7.11%, 3.47%, and 6.44%, respectively due to the high activity levels of manganese peroxidase (MnP, 973 IU g-1) and lignin peroxidase (LiP, 1341 IU g-1) produced by the fungus. The breakdown of fibrous networks brought higher yields of EUG and reducing sugars. The highest extraction yield of EUG was 4.86% from the 2-day fermented leaves, 31.4% greater than that from the control (3.69%). Meanwhile, the leaf residues after EUG extraction released 97.8 mg g-1 reducing sugars with enzymatic saccharification, 77.5% greater than that from the control (55.1 mg g-1). The results demonstrated that I. obliquus could use E. ulmoides leaves as substrate to produce high-activity-level ligninolytic enzymes in a very short time and the lignocellulose selective degradation of E. ulmoides leaves enhanced the yields of EUG and reducing sugars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call