Abstract

Coherence resonance (CR) describes a counterintuitive phenomenon in which the optimal oscillatory responses in nonlinear systems are shaped by a suitable noise amplitude. This phenomenon has been observed in neural systems. In this research, the generation of double coherence resonances (DCRs) due to white noise is investigated in a three-dimensional reduced Hodgkin-Huxley neuron model with multiple-timescale feature. We show that additive white noise can induce DCRs from the resting state near a subcritical Hopf bifurcation. The appearance of DCRs is related to the changes of the firing pattern aroused by the increases of the noise amplitude. The underlying dynamical mechanisms for the appearance of the DCRs and the changes of the firing pattern are interpreted using the phase space analysis and the dynamics of the stable focus-node near the subcritical Hopf bifurcation. We find that the multiple-timescale dynamics is essential for generating the DCRs and different firing patterns. The results not only present a case in which noise can induce DCRs near a Hopf bifurcation but also provide its dynamical mechanism, which enriches the phenomena in nonlinear dynamics and provides further understanding on the roles of noise in neural systems with multiple-timescale feature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call