Abstract

Diffusion tensor imaging (DTI) is a new imaging method that can be used to non-invasively measure the diffusion coefficient of water molecules in biological tissue structures in recent years. Since the DTI data is a tensor space, its segmentation is different from ordinary MRI images. Based on the existing deep learning model, an improved image semantic segmentation method based on super-pixels and conditional random field is proposed. Firstly, this paper uses the existing feature extraction model based on deep learning to obtain rough semantic segmentation results, including high-level semantic information of the image but lacking details of the image. In addition, the super-pixel segmentation algorithm is implemented to obtain super-pixels that carries more low-level information. Secondly, due to the lack of image details in rough segmentation results, the segmentation of the edge of the image is inaccurate. In this paper, a boundary optimization algorithm is proposed to optimize the edge segmentation accuracy of the rough results. Finally, the use of super-pixels for local boundary optimization can improve the segmentation accuracy. Experiments results show that this segment is a practical and effective method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call