Abstract
To evaluate the ability of neurite orientation dispersion and density imaging (NODDI) for detecting white matter (WM) microstructural abnormalities in minimal hepatic encephalopathy (MHE). Diffusion-weighted images, enabling the estimation of NODDI and diffusion tensor imaging (DTI) parameters, were acquired from 20 healthy controls (HC), 22 cirrhotic patients without MHE (NHE), and 15 cirrhotic patients with MHE. Tract-based spatial statistics were used to determine differences in DTI (including fractional anisotropy [FA] and mean/axial/radial diffusivity [MD/AD/RD]) and NODDI parameters (including neurite density index [NDI], orientation dispersion index [ODI], and isotropic volume fraction [ISO]). Voxel-wise analyses of correlations between diffusion parameters and neurocognitive performance determined by Psychometric Hepatic Encephalopathy Score (PHES) were completed. MHE patients had extensive NDI reduction and rare ODI reduction, primarily involving the genu and body of corpus callosum and the bilateral frontal lobe, corona radiata, external capsule, anterior limb of internal capsule, temporal lobe, posterior thalamic radiation, and brainstem. The extent of NDI and ODI reduction expanded from NHE to MHE. In both MHE and NHE groups, the extent of NDI change was quite larger than that of FA change. No significant intergroup difference in ISO/MD/AD/RD was observed. Tissue specificity afforded by NODDI revealed the underpinning of FA reduction in MHE. The NDI in left frontal lobe was significantly correlated with PHES. MHE is characterized by diffuse WM microstructural impairment (especially neurite density reduction). NODDI can improve the detection of WM microstructural impairments in MHE and provides more precise information about MHE-related pathology than DTI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.