Abstract

BackgroundGrowing evidence suggests the presence of white matter (WM) alterations in bipolar disorder (BD). In this study we aimed to investigate the state of WM structures, in terms of tissue integrity and morphological complexity, in BD patients compared to healthy controls (HC), in an attempt to better elucidate the microstructural changes associated with BD. MethodsWe collected a dataset of 399 Diffusion Tensor Magnetic Resonance Imaging (167 BD and 232 healthy controls) images, acquired at five different sites, which was processed with Tract-Based Spatial Statistics (TBSS) and fractal analysis. ResultsThe TBSS analysis demonstrated significantly lower FA values in the BD group. Diffusion abnormalities were primarily located in the temporo-parietal network. The Fractal Dimension (FD) analysis did not reveal consistent significant differences in the morphological complexity of WM structures between the groups. When the FD values of patients were considered individually, it is possible to notice some localized significant deviations from the healthy population. LimitationsDTI sequences have not been harmonized before acquisition, samples' sizes are heterogeneous. ConclusionsThis study, by applying both TBSS and FD analyses, allows to evaluate diffusion and structural alterations of WM at the same time. The evaluation of WM integrity from these two different perspectives could be useful to better understand the pathophysiological and morphological changes underpinning bipolar disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.