Abstract

White matter (WM) degeneration is suggested to predict the early signs of Alzheimer's disease (AD). The exact structural regions of brain circuitry involved are not known. This study aims to examine the associations between WM tract integrity, represented by the diffusion tensor imaging (DTI) measures, and AD diagnosis and to denote the key substrates in predicting AD. It included DTI measures of mean diffusivity (MD), fractional anisotropy, radial diffusivity and axial diffusivity of 18 main WM tracts in 84 non-Hispanic white participants from the Alzheimer's Disease Neuroimaging Initiative dataset. The multivariable general linear model was used to examine the association of AD diagnosis with each DTI measure adjusting for age, gender and education. The corpus callosum, fornix, cingulum hippocampus, uncinate fasciculus, sagittal striatum, left posterior thalamic radiation and fornix-stria terminalis showed significant increases in MD, radial and axial diffusivity, whereas the splenium of corpus callosum and the fornix showed significant decreases in fractional anisotropy among AD patients. Variable cluster analysis identified that hippocampus volume, mini-mental state examination (MMSE), cingulate gyrus/hippocampus, inferior fronto-occipital fasciculus and uncinate fasciculus are highly correlated in one cluster with MD measures. In conclusion, there were significant differences in DTI measures between the brain WM of AD patients and controls. Age is the risk factor associated with AD, not gender or education. Right cingulum gyrus and right uncinate fasciculus are particularly affected, correlating well with a cognitive test MMSE and MD measures for dementia in AD patients and could be a region of focus for AD staging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call