Abstract
A methodology for automatic identification and segmentation of white matter hyper-intensities appearing in magnetic resonance images of brain axial cuts is presented. To this end, a sequence of image processing technics is employed to form an image where the hyper-intensities in white matter differ notoriously from the rest of the objects. This pre-processing stage facilitates the posterior process of identification and segmentation of the hyper-intensity volumes. The proposed methodology was tested on 55 magnetic resonance images from six patients. These images were analysed by the proposed system and the resulted hyper-intensity images were compared with the images manually segmented by experts. The experimental results show the mean rate of true positives of 0.9, the mean rate of false positives of 0.7 and the similarity index of 0.7; it is worth commenting that the false positives are found mostly within the grey matter not causing problems in early diagnosis. The proposed methodology for magnetic resonance image processing and analysis may be useful in the early detection of white matter lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.