Abstract

A comprehensive characterization of the spatiotemporal organization in the whole brain is critical to understand both the function and dysfunction of the human brain. Resting-state functional connectivity (FC) of gray matter (GM) has helped in uncovering the inherent baseline networks of brain. However, the white matter (WM), which composes almost half of brain, has been largely ignored in this characterization despite studies indicating that FC in WM does change during task and rest functional magnetic resonance imaging (fMRI). In this study, we identify 9 white matter functional networks (WM-FNs) and 9 gray matter functional networks (GM-FNs) of resting fMRI. Intraclass correlation coefficient (ICC) was calculated on multirun fMRI data to estimate the reliability of static functional connectivity (SFC) and dynamic functional connectivity (DFC). Associations between SFC, DFC, and their respective ICCs are estimated for GM-FNs, WM-FNs, and GM-WM-FNs. SFC of GM-FNs were stronger than that of WM-FNs, but the corresponding DFC of GM-FNs was lower, indicating that WM-FNs were more dynamic. Associations between SFC, DFC, and their ICCs were similar in both GM- and WM-FNs. These findings suggest that WM fMRI signal contains rich spatiotemporal information similar to that of GM and may hold important cues to better establish the functional organization of the whole brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.