Abstract

Dissociation is a common trauma response to trauma linked to functional brain disruptions in brain networks subserving emotion regulation and multisensory integration; however, structural neural correlates of dissociation are less known, particularly abnormalities in stress-sensitive white matter (WM) tracts. The present study examined associations between dissociation and WM microstructure, assessed via fractional anisotropy (FA), in a large, diverse sample of women recruited as part of a long-standing trauma study, the Grady Trauma Project (GTP). As part of GTP, 135 trauma-exposed women (18-62 years old, M=34.25, SD=12.96, 84% self-identifying as Black) were recruited, received diffusion-weighted imaging, and completed the Multiscale Dissociation Inventory (MDI); FA values were extracted from ten major WM tracts of interest. Partial correlations were conducted to examine associations between dissociation facets (MDI total and subscales) and FA while covarying age and temporal signal-to-noise ratio; false discovery rate corrected p < .05 indicated statistical significance. FA in seven tracts showed significant negative associations with overall dissociation (MDI total score; rs<-.19, pFDR<.05); the corona radiata, corpus callosum, superior longitudinal fasciculus, thalamic radiation, anterior cingulum, fornix, and uncinate fasciculus. Among facets of dissociation, FA was most consistently associated with dissociative memory disturbance, showing a significant and negative association with all but one of tracts of interest, (rs<-.23, pFDR<.05). Our findings indicated that dissociation severity was linked to proportionally lesser WM microstructural integrity in tracts involved with sensory integration, emotion regulation, memory, and self-referential processing. Disruptions in these pathways may underlie dissociative phenomena, representing important psychotherapeutic and neuromodulatory targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.