Abstract

Background: Diffusion tensor imaging (DTI) allows the analysis of changes in microstructure, through the quantification of the spread and direction of water molecules in tissues. We used fractional anisotropy (FA) maps to compare the integrity of WM between patients and controls. The objective of the present study was to investigate WM abnormalities in patients with frontal lobe epilepsy secondary to focal cortical dysplasia (FCD). Materials and Methods: We included 31 controls (12 women, 33.1 ± 9.6 years, mean ± SD) and 22 patients (11 women, 30.4 ± 10.0 years), recruited from our outpatient clinic. They had clinical and EEG diagnosis of frontal lobe epilepsy, secondary to FCD detected on MRI. Patients and controls underwent 3T MRI, including the DTI sequence, obtained in 32 directions and b value of 1000 s/mm2. To process the DTI we used the following softwares: MRIcroN and FSL/TBSS (tract-based spatial statistics). We used a threshold-free cluster enhancement with significance at p < 0.05, fully corrected for multiple comparisons across space. Results: Areas with FA reduction in patients were identified in both hemispheres, mainly in the frontal lobes, cingulum, and forceps minor (p = 0.014), caudate e anterior thalamic radiation (p = 0.034), superior longitudinal fasciculus (p = 0.044), uncinate fasciculus, and inferior fronto-occipital fasciculus (p = 0.042). Conclusion: Our results showed a widespread pattern of WM microstructural abnormalities extending beyond the main lesion seen on MRI (frontal lobe), which may be related to frequent seizures or to the extent of MRI-invisible portion of FCD.

Highlights

  • Epilepsy secondary to focal cortical dysplasia (FCD) usually begins early in life, is often refractory to antiepileptic drug (AED) therapy, and a frequent cause of focal motor status or focal epilepsy, which may be life-threatening (Desbiens et al, 1993)

  • We identified a reduction of fractional anisotropy (FA) in these patients mainly in: forceps minor (p = 0.032), ipsilateral hemisphere, forceps minor (p = 0.042), and cingulum (p = 0.048) in the contralateral hemisphere (Figure 1A; Table A1 in Appendix)

  • We found a widespread pattern of WM microstructural abnormalities extending beyond the MRI visible lesion and putative epileptogenic area in patients with frontal lobe epilepsy secondary to MRI identified FCD

Read more

Summary

Introduction

Epilepsy secondary to focal cortical dysplasia (FCD) usually begins early in life, is often refractory to antiepileptic drug (AED) therapy, and a frequent cause of focal motor status or focal epilepsy, which may be life-threatening (Desbiens et al, 1993). The objective of the present study was to investigate WM abnormalities in patients with frontal lobe epilepsy secondary to focal cortical dysplasia (FCD). Materials and Methods: We included 31 controls (12 women, 33.1 ± 9.6 years, mean ± SD) and 22 patients (11 women, 30.4 ± 10.0 years), recruited from our outpatient clinic. They had clinical and EEG diagnosis of frontal lobe epilepsy, secondary to FCD detected on MRI. Conclusion: Our results showed a widespread pattern of WM microstructural abnormalities extending beyond the main lesion seen on MRI (frontal lobe), which may be related to frequent seizures or to the extent of MRI-invisible portion of FCD

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call