Abstract

To characterize white matter abnormalities in adolescents with early-onset schizophrenia (EOS) relative to 3 comparison groups (adolescents at clinical high risk for developing schizophrenia [CHR], adolescents with cannabis use disorder [CUD], and healthy controls [HC]), and to identify neurocognitive correlates of white matter abnormalities in EOS. We used diffusion tensor imaging and tractography methods to examine fractional anisotropy (FA) of the cingulum bundle, superior longitudinal fasciculus, corticospinal tract (CST), inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF), and uncinate fasciculus in adolescents with EOS (n = 55), CHR (n = 21), CUD (n = 31), and HC (n = 55). FA in tracts that were significantly altered in EOS was correlated with neurocognitive performance. EOS and CHR groups had significantly lower FA than HC in 4 tracts, namely, bilateral CST, left ILF, and left IFOF. CUD had lower FA than HC in left IFOF. Lower FA in left IFOF and left ILF predicted worse neurocognitive performance in EOS. This study identified white matter abnormalities of the left ILF and left IFOF as possible biomarkers of vulnerability for developing schizophrenia. Lower FA in these tracts may disrupt functioning of ventral visual and language streams, producing domain-specific neurocognitive deficits that interfere with higher-order cognitive abilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.