Abstract
By applying dephasing gradients, local magnetic field inhomogeneitiescan selectively visualized with positive contrast, such as those created by magnetically labeled cells. This is known as "white-marker imaging." In white-marker imaging, subvoxel signal variations are also visualized as a result of partial volume (PV) effects and may compromise the identification of magnetic structures (e.g., magnetically-labeled cells). This study presents the theory and proof-of-principle experiments of a strategy to eliminate PV effects during white-marker imaging. The strategy employs the asymmetry of the signal response curves for non-PV effects as a function of externally applied gradients. In the case of PV effects, subtraction of the symmetrical signal responses eliminates their contribution. In vitro experimental images were made using a spherical phantom with cylindrical elements. In vivo images of the brain were obtained at a location that included air cavities (susceptibility effects) and the circle of Willis (PV effect). The results show that PV effects were eliminated in the in vitro experiments and were virtually absent under in vivo conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.