Abstract

Based on generalized cross-correlation time delay estimation (GCTDE), a new white light scanning interferometry (WLSI) method is proposed, in which the profile information usually achieved with the zero optical path difference (ZOPD) position is replaced with the relative displacement of interference signal between different pixels. Because all spectral information of interference signal (envelope and phase) and filter is utilized, the proposed GCTDE-based WLSI method reveals the advantages of higher accuracy and better noise suppression capability. Especially, in the case where the shape of interference signal envelope is irregular, the proposed method can achieve profile measurement with high accuracy while the conventional ZOPD position locating method cannot work. Moreover, by introducing laser interferometry system to calibrate the vertical displacement of a piezoelectric ceramic transducer scanning system, the measuring accuracy of the proposed GCTDE-based WLSI is further improved. Both the simulation and the experimental results demonstrate the significant accuracy advantage of the proposed GCTDE-based WLSI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.