Abstract

This study presents a highly efficient and mild method for radical hydrosilylation of alkenes. The reaction proceeds under white-light, in the presence of Mn2(CO)10 pre-catalyst and HFIP as an additive, at r.t. and under air. Under white-light, [Mn]• is generated, which activates the Si–H-group to form Si• and trigger the autocatalytic process. HFIP acts as a unique activator which enables synthesis of the products with yields close to quantitative and with anti-Markovnikov selectivity. The method is applicable to terminal alkenes, including those with O-, N- and halogen-containing functional groups, styrene and allylbenzene derivatives, etc., as well as to a wide range of alkyl-, phenyl-, siloxy- and alkoxy-containing tertiary hydrosilanes. These conditions turned out to be most efficient for hydrosilylation of gaseous reagents such as ethylene and acetylene. In both cases the products showed quantitative yield at 1 atm and at r.t. The method is easily up-scalable in batch- and flow-modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call