Abstract

Packaging efficiency and optical performances are important indexes for white light-emitting diodes (WLEDs) packaging. In this letter, wafer-level WLEDs packaging were presented by printing phosphor on three-dimensional (3D) ceramic substrate to improve packaging efficiency and optical consistency. The 3D ceramic substrate was prepared by repeatedly electroplating copper cups on the planar direct plated copper (DPC) ceramic substrate. The phosphor concentration was adjusted to realize natural white light. The fabrication errors of the 3D ceramic substrate and the optical performances of WLED modules were analyzed to evaluate the optical consistency of the WLED modules packaged by using 3D ceramic substrate. Consequently, the fabrication errors of 3D ceramic substrate are less than 1%. When the phosphor concentration was set at 12.5 wt%, the packaged LEDs achieve a natural white light with luminous efficiency (LE) of 94.55 lm/W, correlated color temperature (CCT) of 5915 K, and chromaticity coordinate of (0.3166, 0.3345). The WLED modules exhibit small standard deviations in LE (1%), color rendering index (1%), correlated color temperature (98 K), and high reliability. The results indicate that the WLEDs packaged using 3D ceramic substrate have excellent optical consistency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call