Abstract

AbstractA fluorescent naphthalimide‐tetrazine dyad (NITZ) was examined for electrofluorochromism. The reversible electrochemistry of the tetrazine was accompanied by the fluorescence change through a quasi‐complete energy transfer in an electrochemical cell prepared by the mixture of polymer electrolyte and naphthalimide‐tetrazine dyad. Owing to the energy transfer within the dyad (naphthalimide and tetrazine), the fluorescence efficiency of NITZ was much enhanced and the effective fluorophore concentration in this system was much less than other tetrazine based electrofluorochromic device (EFD). Thus the yellow fluorescence of NITZ was switched on and off remarkably even with small quantity of NITZ (1 wt.%) in an EFD upon application of step potentials for different redox state. Furthermore, multi‐color fluorescence switching was achieved by blending a naphthalimide to the electrofluorochromic layer, to show white‐blue‐dark state of fluorescence. Since the tetrazine and naphthalimide units have their emission quenched at different potentials, the emission color could be tuned by quenching emission at selected wavelengths, reversibly, under low working potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.