Abstract
Recent surveys have discovered a population of faint supernovae, known as Ca-rich gap transients, inferred to originate from explosive ignitions of white dwarfs. In addition to their unique spectra and luminosities, these supernovae have an unusual spatial distribution and are predominantly found at large distances from their presumed host galaxies. We show that the locations of Ca-rich gap transients are well matched to the distribution of dwarf spheroidal galaxies surrounding large galaxies, in a scenario where dark matter interactions induce thermonuclear explosions among low-mass white dwarfs that may be otherwise difficult to ignite with standard stellar or binary evolution mechanisms. A plausible candidate to explain the observed event rate are primordial black holes with masses above 10^{21} grams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.