Abstract

Digital pathology and microscopic image analysis play an important role in cell morphology research. In particular, the effective segmentation of White Blood Cells (WBCs) remains a challenging problem due to the blurring boundaries of WBCs under rapid staining, as well as the adhesion between leukocytes and other cells. In this paper, we propose a novel WBC (including nuclei and cells) segmentation algorithm based on both sparsity and geometry constraints. Specifically, we first construct a sparse image representation via combining the HSL color space and the RGB color channels, followed by the use of a sparsity constraint to only preserve useful information from the nuclei features. In addition, we introduce a robust model fitting strategy (i.e., the geometry constraint) to detect cells. Our model fitting strategy is able to significantly improve the robustness of the proposed segmentation algorithm against outliers that could seriously contaminate WBCs. The experimental results show that the proposed algorithm presents clear advantages over the state-of-the-art WBC segmentation algorithms in terms of accuracy.

Highlights

  • White blood cells (WBCs) [1], [2] are important defense cells in human blood that consists of five kinds of cells, i.e., neutrophils, basophils, eosinophils, monocytes, and lymphocytes

  • We explore improving the localization accuracy of unsupervised WBC segmentation methods by exploiting sparsity in image features and the geometric regularities of blood cells

  • THE PROPOSED ALGORITHM we describe the details of the proposed WBC segmentation algorithm based on sparsity and geometry constraints

Read more

Summary

Introduction

White blood cells (WBCs) [1], [2] are important defense cells in human blood that consists of five kinds of cells, i.e., neutrophils, basophils, eosinophils, monocytes, and lymphocytes. The WBC segmentation is a challenging task for a variety of medical diagnosis applications. The visual examination of WBCs in blood smears collected under a bright field microscope can be used to diagnose various diseases, such as septic bacterial inflammation, uremia, and various kinds of leukaemia. A number of WBC segmentation methods have been proposed in recent years. Existing methods can be divided into two distinct categories: supervised vs unsupervised WBC segmentation methods. The supervised WBC segmentation methods [3]–[6] formulate the

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call