Abstract
The temperature stability of white and blue OLEDs was investigated by observing the I-V, EL-V and the spectral characteristics of various devices stored at elevated temperature (up to 130 degrees Celsius). Blue multilayer organic light emitting diodes (OLEDs) containing PEDT (polyethylenedioxythiophene) or PANI (polyaniline) derivatives as the hole injection and puffer layer, aromatic diamines like Spiro-TAD (2,2',7,7'- tetrakis(diphenylamino)spiro-9,9'-bifluorene) as a hole transport material (HTM), Spiro-DPVBi (2,2',7,7'- tetrakis(2,2-diphenylvinyl)spiro-9,9'-bifluorene) as an emitting material (EM) and of Alq<SUB>3</SUB> (tris(8-hydroxy- quinoline)aluminum) as the electron-injection and electron- transport layer (ETL) were fabricated. White OLEDs were prepared, containing an additional DCM (dicyanmethylene-2- methyl-6-(p-dimethylaminostyryl)-4H-pyran) doped Alq<SUB>3</SUB> layer between the Spiro-DPVBi and Alq<SUB>3</SUB> layer. Use of Spiro-TAD as a hole transport material (HTM) and of Spiro- DPVBi as an emitting material (EM) resulted in dramatically improved temperature stability: for the white and blue OLED no significant deterioration up to 130 degrees Celsius were found. Devices consisting of non spiro components like NPB and/or DPVBi already started to degrade at much lower temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.