Abstract

VLF emissions triggered by whistlers are often observed at middle and high latitudes in the topside ionosphere by ISIS satellites. Most of them are so‐called LHR emissions lasting for a few seconds. Latitudinal distributions of the occurrence rate for the whistler‐triggered emissions in the topside ionosphere have been obtained by using VLF electric field data (50 Hz to 30 kHz) received from the ISIS 1 and 2 satellites at Kashima station, Communications Research Laboratory, Japan. These VLF emissions are classified into two groups according to the type of whistlers, i.e., ducted whistlers with a continuous trace over the full frequency range of the spectrum and nonducted whistlers without a complete trace below fLHR. The latitudinal distribution of the occurrence rate for emissions triggered by ducted whistlers is considerably different from that for emissions triggered by nonducted whistlers, especially at high latitudes. The occurrence rate for the emissions by nonducted whistlers is distributed rather randomly in latitude between L = 2.0 and L = 4.2. The occurrence rate for emissions by ducted whistlers increases with latitudes between L = 1.5 and L = 2.9, and it attains a maximum of 0.33 at L = 2.7. It then abruptly drops to 0.1 at L = 3.0, and it remains below 0.1 between L = 3.0 and L = 4.0. The decrease of the occurrence rate for emissions by ducted whistlers at L = 3.0 seems to be caused by the decrease of the radiation belt electron flux near the slot region. These results suggest that the VLF emissions triggered by ducted whistlers in the topside ionosphere are generated by the cyclotron resonant interaction of ducted whistlers with the magnetospheric electrons near the geomagnetic equatorial plane. Most VLF emissions triggered by nonducted whistlers seem to be observed as the LHR hiss produced by nonducted whistlers in the vicinity of the satellite in the topside ionosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.