Abstract

AbstractWhistler mode waves are generated within and can propagate upstream of collisionless shocks. They are known to play a role in electron thermodynamics/acceleration and, under certain conditions, are markedly observed as wave trains preceding the shock ramp. In this paper, we take advantage of Cassini's presence at ~10 AU to explore the importance of whistler mode waves in a parameter regime typically characterized by higher Mach number (median of ~14) shocks, as well as a significantly different interplanetary magnetic field structure, compared to near Earth. We identify electromagnetic precursors preceding a small subset of bow shock crossings with properties which are consistent with whistler mode waves. We find these monochromatic, low‐frequency, and circularly polarized waves to have a typical frequency range of 0.2–0.4 Hz in the spacecraft frame. This is due to the lower ion and electron cyclotron frequencies near Saturn, between which whistler waves can develop. The waves are also observed as predominantly right handed in the spacecraft frame, the opposite sense to what is typically observed near Earth. This is attributed to the weaker Doppler shift, owing to the large angle between the solar wind velocity and magnetic field vectors at 10 AU. Our results on the low occurrence of whistler waves upstream of Saturn also underpin the predominantly supercritical bow shock of Saturn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.