Abstract

AbstractWe investigate the influence of lightning‐generated whistlers on the overall intensity of electromagnetic waves measured by the Detection of Electro‐Magnetic Emissions Transmitted from Earthquake Regions spacecraft (2004–2010, quasi Sun‐synchronous polar orbit with an altitude of about 700 km) at frequencies below 18 kHz. Whistler occurrence rate evaluated using an onboard neural network designed for automated whistler detection is used to distinguish periods of high and low whistler occurrence rates. It is shown that especially during the night and particularly in the frequency‐geomagnetic latitude intervals with a low average wave intensity, contribution of lightning‐generated whistlers to the overall wave intensity is significant. At frequencies below 1 kHz, where all six electromagnetic wave components were measured during specific intervals, the study is accompanied by analysis of wave propagation directions. When we limit the analysis only to fractional‐hop whistlers, which propagate away from the Earth, we find a reasonable agreement with results obtained from the whole data set. This also confirms the validity of the whistler occurrence rate analysis at higher frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.