Abstract
Intracellular probing at single cell resolution is key to revealing the heterogeneity of cells, learning new cell subtypes and functions, understanding the pathophysiology of disease, and ensuring precise diagnosis and treatment. Despite the best efforts, an enormous challenge remains due to the very small size, extremely low content, and dynamic microenvironment of a single cell. Whispering gallery mode (WGM) micro/nanolasers (active WGM) offer unique advantages of small mode volume, high quality factors, bright and low threshold laser emission, and narrow line width, particularly suitable for integration within a single cell. In this review, we provide a focused overview of WGM micro/nanolasers for intracellular probing. We deliver information on WGM micro/nanolaser concepts, sensing mechanism, and biocompatibility, as well as recent progress in intracellular probing applications mainly covering cellular-level sensing, molecular-level detection, and feasibility for cellular imaging. At the end, challenges and prospects of WGM micro/nanolasers for intracellular applications are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.