Abstract
The planar \((n+1)\)-body problem models the motion of \(n+1\) bodies in the plane under their mutual Newtonian gravitational attraction forces. When \(n\ge 3\), the question about final motions, that is, what are the possible limit motions in the planar \((n+1)\)-body problem when \(t\rightarrow \infty \), ceases to be completely meaningful due to the existence of non-collision singularities. In this paper we prove the existence of solutions of the planar \((n+1)\)-body problem which are defined for all forward time and tend to a parabolic motion, that is, that one of the bodies reaches infinity with zero velocity while the rest perform a bounded motion. These solutions are related to whiskered parabolic tori at infinity, that is, parabolic tori with stable and unstable invariant manifolds which lie at infinity. These parabolic tori appear in cylinders which can be considered “normally parabolic”. The existence of these whiskered parabolic tori is a consequence of a general theorem on parabolic tori developed in this paper. Another application of our theorem is a conjugation result for a class of skew product maps with a parabolic torus with its normal form generalizing results of Takens (Ann Inst Fourier 23(2):163–195, 1973), and Voronin (Funktsional Anal i Prilozhen 15(1):1–17, 96, 1981).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.