Abstract

Neuronal activity in the motor cortex is understood to be correlated with movements, but the impact of action potentials (APs) in single cortical neurons on the generation of movement has not been fully determined. Here we show that trains of APs in single pyramidal cells of rat motor cortex can evoke long sequences of small whisker movements. For layer-5 pyramids, we find that evoked rhythmic movements have a constant phase relative to the AP train, indicating that single layer-5 pyramids can reset the rhythm of whisker movements. Action potentials evoked in layer-6 pyramids can generate bursts of rhythmic whisking, with a variable phase of movements relative to the AP train. An increasing number of APs decreases the latency to onset of movement, whereas AP frequency determines movement direction and amplitude. We find that the efficacy of cortical APs in evoking whisker movements is not dependent on background cortical activity and is greatly enhanced in waking rats. We conclude that in vibrissae motor cortex sparse AP activity can evoke movements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.