Abstract

Nonstationary excitations of slender, elastic, cantilevered beams with equal principal moments of inertia are considered. The excitation frequency is slowly increased or decreased through a resonance of the first mode at a constant rate. Three resonances are investigated: primary resonance, superharmonic resonance of order two and subharmonic resonance of order two. After application of Galerkin's method with three modes, the nonlinear, nonstationary response of the first mode of the beam is determined by two methods: integration of the modulation equations obtained from the method of multiple scales, and direct numerical integration of the temporal equations of motion. Time histories are presented and the effects of excitation amplitude, rate of acceleration or deceleration through resonance, damping and initial conditions of the disturbance on the maximum response are studied. The effect of a persistent random disturbance is also examined. Although the excitation acts in the vertical plane, whirling occurs if the beam is subjected to out-of-plane disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call