Abstract

A mathematical model of an unloaded symmetric rotor supported by one rigid and one fluid lubricated bearing is proposed. The rotor model is represented by generalized (modal) parameters of its first bending mode. The rotational character of the bearing fluid force is taken into account. The model yields synchronous vibrations due to rotor unbalance as a particular solution of the equations of motion, rotor/bearing system natural frequencies and corresponding self-excited vibrations known as “oil whirl” and “oil whip”. The stability analysis yields rotative speed threshold of stability. The model also gives the evaluation of stability of the rotor synchronous vibrations. In the first balance resonance speed region two more thresholds of stability are encountered. The width of this stability region is directly related to the amount of rotor unbalance. The results of the analysis based on this model stand with very good agreement with field observations of rotor dynamic behavior and the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call