Abstract
A series of hypervelocity impact tests have been performed on aluminum alloy Whipple shields to investigate failure mechanisms and performance limits in the shatter regime. Test results demonstrated a more rapid increase in performance than predicted by the latest iteration of the JSC Whipple shield ballistic limit equation (BLE) following the onset of projectile fragmentation. This increase in performance was found to level out between 4.0 and 5.0 km/s, with a subsequent decrease in performance for velocities up to 5.6 km/s. For a detached spall failure criterion, the failure limit was found to continually decrease up to a velocity of 7.0 km/s, substantially varying from the BLE, while for perforation-based failure an increase in performance was observed. An existing phenomenological ballistic limit curve was found to provide a more accurate reproduction of shield behavior that the BLE, prompting an investigation of appropriate models to replace linear interpolation in shatter regime. A largest fragment relationship was shown to provide accurate predictions up to 4.3 km/s, which was extended to the incipient melt limit (5.6 km/s) based on an assumption of no additional fragmentation. Alternate models, including a shock enhancement approach and debris cloud cratering model are discussed as feasible alternatives to the proposed curve in the shatter regime, due to conflicting assumptions and difficulties in extrapolating the current approach to oblique impact. These alternate models require further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.