Abstract

BackgroundTrichuris trichiura (human whipworm) infects an estimated 477 million individuals worldwide. In addition to T. trichiura, other Trichuris species can cause an uncommon zoonosis and a number of human cases have been reported. The diagnosis of trichuriasis has relied traditionally on microscopy. Recently, there is an effort to use molecular diagnostic methods, mainly qPCR. LAMP technology could be an alternative for qPCR especially in low-income endemic areas. Trichuris muris, the causative agent of trichuriasis in mice, is of great importance as a model for human trichuriasis. Here, we evaluate the diagnostic utility of a new LAMP assay in an active experimental mouse trichuriasis in parallel with parasitological method by using stool and, for the first time, urine samples.MethodsStool and urine samples were collected from mice infected with eggs of T. muris. The dynamics of infection was determined by counting the number of eggs per gram of faeces. A LAMP based on the 18S rRNA gene from T. muris was designed. Sensitivity and specificity of LAMP was tested and compared with PCR. Stool and urine samples were analysed by both LAMP and PCR techniques.ResultsTrichuris muris eggs were detected for the first time in faeces 35 days post-infection. LAMP resulted specific and no cross-reactions were found when using 18 DNA samples from different parasites. The detection limit of the LAMP assay was 2 pg of T. muris DNA. When testing stool samples by LAMP we obtained positive results on day 35 p.i. and urine samples showed amplification results on day 20 p.i., i.e. 15 days before the onset of T. muris eggs in faeces.ConclusionsTo the best of our knowledge, we report, for the first time, a novel LAMP assay (Whip-LAMP) for sensitive detection of T. muris DNA in both stool and urine samples in a well-established mice experimental infection model. Considering the advantages of urine in molecular diagnosis in comparison to stool samples, should make us consider the possibility of starting the use urine specimens in molecular diagnosis and for field-based studies of human trichuriasis where possible. Further studies with clinical samples are still needed.

Highlights

  • Trichuris trichiura infects an estimated 477 million individuals worldwide

  • Monitoring of T. muris infection by counting eggs in mice stool samples Trichuris muris eggs were detected for the first time in faeces (3749 ± 365 eggs per gram of faeces (EPG)) on day 35 p.i. (Fig. 1)

  • PCR forward outer primer (F3)‐reverse outer primer (B3): analytical specificity and limit of detection The in silico expected 186 bp PCR product using outer primers F3 and B3 was successfully amplified from T. muris DNA (Fig. 2a)

Read more

Summary

Introduction

Trichuris trichiura (human whipworm) infects an estimated 477 million individuals worldwide. Soil-transmitted helminth (STH) infections refer to diseases mainly caused by intestinal nematodes, Ascaris lumbricoides (roundworm), Ancylostoma duodenale and related species, and Necator americanus (hookworms), and Trichuris trichiura (whipworm) affecting almost 2 billion people worldwide, commonly in tropical and subtropical countries among populations living in poverty and inadequate sanitation [1]. Another important STH is Strongyloides stercoralis (threadworm), but it is usually omitted in clinical practices and control programmes because it needs different diagnostic tools and different treatment [2]. Infection during pregnancy increases the risk of maternal anaemia and reduces infant birth weight and survival [1]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call