Abstract

In forensic medicine, deceased are usually identified by comparing ante- and post-mortem dental or radiological features. However, in severe putrefaction, burning or absent reference data, the remaining tool for identifying human remains is DNA genotyping. But even a DNA-based identification can be challenging when confronted with a high post-mortem interval or heat impacts because it can lead to undesirable degradation of the DNA that varies among tissue types.This retrospective study investigated the identification success in 402 altered human corpses over seven years by comparing the examined tissue types from decomposed, skeletonised and burnt corpses as well as bodies found in water. For each tissue, the STR genotyping results and the number of additional or parallel genetic analyses were evaluated. By comparing the amplification success in samples from altered and unaltered remains, condition-based and tissue-specific differences were observed. With a mean number of 1.6 additional amplifications in cases with well-preserved corpses and 4.5 in altered corpses, the results showed significantly more DNA analyses for altered remains. In 83% of the cases, extra amplifications were performed to identify the corpse. The tissue-specific differences revealed an uncertainty in choosing suitable material from altered corpses for a successful DNA profile. Especially for bone and muscle samples, the genotyping success was the most unpredictable. Furthermore, comparing the retrospective outcome with other research findings, a remarkable variety of recommendations for the “best tissue choice” exists in the forensic community. Thus, our survey highlights the advantages of a broader and systematic approach on hard and soft tissues for successful DNA-based identification of altered human remains at first attempt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call