Abstract
Popular DMSP night lights data are flawed by blurring, top-coding, and lack of calibration. Yet newer and better VIIRS data are rarely used in economics. We compare these two data sources for predicting GDP, especially at the second subnational level, for Indonesia, China and South Africa. The DMSP data are a poor proxy for GDP outside of cities. The gap in predictive performance between DMSP data and VIIRS data is especially apparent at lower levels of the spatial hierarchy, such as for counties, and for lower density areas. The city lights-GDP relationship is twice as noisy with DMSP data than with VIIRS data. Spatial inequality is considerably understated with DMSP data, especially for the urban sector and in higher density areas. A Pareto adjustment to correct for top-coding in DMSP data has a modest effect but still understates spatial inequality and misses key features of economic activity in big cities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.