Abstract
The aim of the Fault2SHA European Seismological Commission Working Group Central Apennines laboratory is to enhance the use of geological data in fault-based seismic hazard and risk assessment and to promote synergies between data providers (earthquake geologists), end-users and decision-makers. Here we use the Fault2SHA Central Apennines Database where geologic data are provided in the form of characterized fault traces, grouped into faults and main faults, with individual slip rate estimates. The proposed methodology first derives slip rate profiles for each main fault. Main faults are then divided into distinct sections of length comparable to the seismogenic depth to allow consideration of variable slip rates and the exploration of multi-fault ruptures in the computations. The methodology further allows exploration of epistemic uncertainties documented in the database (e.g., main fault definition, slip rates) as well as additional parameters required to characterize the seismogenic potential of fault sources (e.g., 3D fault geometries). To illustrate the power of the methodology, in this paper we consider only one branch of the uncertainties affecting each step of the computation procedure. The resulting hazard and typological risk maps allow both data providers and end-users 1) to visualize the faults that threaten specific localities the most, 2) to appreciate the density of observations used for the computation of slip rate profiles, and 3) interrogate the degree of confidence on the fault parameters documented in the database (activity and location certainty). Finally, closing the loop, the methodology highlights priorities for future geological investigations in terms of where improvements in the density of data within the database would lead to the greatest decreases in epistemic uncertainties in the hazard and risk calculations. Key to this new generation of fault-based seismic hazard and risk methodology are the user-friendly open source codes provided with this publication, documenting, step-by-step, the link between the geological database and the relative contribution of each section to seismic hazard and risk at specific localities.
Highlights
Computing and communicating seismic hazard and risk based on faults has remained a long-standing challenge
The new generation of fault-based PSHA proposed here provides a transparent methodology to account for the best geological information available in a given region for seismic hazard and risk studies
The approach developed empowers end-users and decision-makers with the capacity to identify main fault sections that participate the most to the seismic risk of a site as well as understanding and tracing differences of interpretation documented in the database
Summary
Computing and communicating seismic hazard and risk based on faults has remained a long-standing challenge. It requires: 1) recognition of which faults are active (or not) and characterizing their seismic potential; 2) developing models (physical or statistical) and algorithms for assessing seismic hazard that can consider all the available data; 3) representing and communicating the results to geologists, geophysicists, seismologists, risk management professionals and practitioners, governments, and the at-risk population. In Europe, where the tectonic environment and data collection procedures are not uniform, such “community” efforts to trace the available geological information for use in seismic hazard are slowly emerging. Most of all, tracing data and uncertainties used to build the sources is not readily accessible to the end-users
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.