Abstract

PurposeReduced strength and shear stiffness (SS) of lumbar motion segments following laminectomy may lead to instability. The purpose of the present study was to assess a broad range of parameters as potential predictors of shear biomechanical properties of the lumbar spine.MethodsRadiographs and MRI of all lumbar spines were obtained to classify geometry and degeneration of the motion segments. Additionally, dual X-ray absorptiometry (DXA) scans were performed to measure bone mineral content and density (BMC and BMD). Facet sparing lumbar laminectomy was performed either on L2 or L4, in 10 human cadaveric lumbar spines (mean age 72.1 years, range 53–89 years). Spinal motion segments were dissected (L2–L3 and L4–L5) and tested in shear, under simultaneously loading with 1600 N axial compression. Shear stiffness, shear yield force (SYF) and shear force to failure (SFF) were determined and statistical correlations with all parameters were established.ResultsFollowing laminectomy, SS, SYF, and SFF declined (by respectively 24, 41, and 44%). For segments with laminectomy, SS was significantly correlated with intervertebral disc degeneration and facet joint degeneration (Pfirrmann: r = 0.64; Griffith: r = 0.70; Lane: r = 0.73 and Pathria: r = 0.64), SYF was correlated with intervertebral disc geometry (r = 0.66 for length; r = 0.66 for surface and r = 0.68 for volume), BMC (r = 0.65) and frontal area (r = 0.75), and SFF was correlated with disc length (r = 0.73) and BMC (r = 0.81). For untreated segments, SS was significantly correlated with facet joint tropism (r = 0.71), SYF was correlated with pedicle geometry (r = 0.83), and SFF was correlated with BMC (r = 0.85), BMD (r = 0.75) and frontal area (r = 0.75). SS, SYF and SFF could be predicted for segments with laminectomy (r 2 values respectively: 0.53, 0.81 and 0.77) and without laminectomy (r 2 value respectively: 0.50, 0.83 and 0.83).ConclusionsSignificant loss of strength and SS are predicted by BMC, BMD, intervertebral disc geometry and degenerative parameters, suggesting that low BMC or BMD, small intervertebral discs and absence of osteophytes could predict the possible development of post-operative instability following lumbar laminectomy.

Highlights

  • Lumbar laminectomy is a commonly used treatment for symptomatic degenerative lumbar spinal stenosis [6]

  • SS was significantly correlated with intervertebral disc degeneration and facet joint degeneration (Pfirrmann: r = 0.64; Griffith: r = 0.70; Lane: r = 0.73 and Pathria: r = 0.64), shear yield force (SYF) was correlated with intervertebral disc geometry (r = 0.66 for length; r = 0.66 for surface and r = 0.68 for volume), BMC (r = 0.65) and frontal area (r = 0.75), and shear force to failure (SFF) was correlated with disc length (r = 0.73) and BMC (r = 0.81)

  • SS was significantly correlated with facet joint tropism (r = 0.71), SYF was correlated with pedicle geometry (r = 0.83), and SFF was correlated with BMC (r = 0.85), BMD (r = 0.75) and frontal area (r = 0.75)

Read more

Summary

Introduction

Lumbar laminectomy is a commonly used treatment for symptomatic degenerative lumbar spinal stenosis [6]. Eur Spine J (2012) 21:2640–2648 neurological symptoms, such as low back pain, sciatica, claudication, motor, sensory and reflex activity, often improve following lumbar laminectomy, it can lead to symptomatic postoperative lumbar instability or even postoperative failure of the spinal motion segment [14]. A well-known complication of lumbar laminectomy is excessive shear displacement in the intervertebral joint, leading to postoperative spondylolysis or spondylolisthesis [7]. When residual strength and shear stiffness (SS) of the lumbar spine after laminectomy can be predicted, this may support patient selection for additional spinal stabilization. In other words, based on predicted residual shear properties, the surgeon may decide whether or not to combine laminectomy with (instrumented) fusion techniques

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call